我和丰满岳疯狂做爰,久久久久亚洲AV片无码,亚洲色欲一区二区三区在线观看,疯狂做受XXXX高潮欧美日本

掃碼關注公眾號           掃碼咨詢技術支持           掃碼咨詢技術服務
  
客服熱線:400-901-9800  客服QQ:4009019800  技術答疑  技術支持  質量反饋  關于我們  聯系我們
亚洲国产精品无码久久98,国模冰莲自慰肥美胞极品人体图,无码欧精品亚洲日韩一区
首頁 > 產品中心 > 一抗 > 產品信息
CDMP1 Rabbit pAb (bs-6580R)  
訂購熱線:400-901-9800
訂購郵箱:sales@www.ssxsbs.com
訂購QQ:  400-901-9800
技術支持:techsupport@www.ssxsbs.com
50ul/1180.00元
100ul/1980.00元
200ul/2800.00元
大包裝/詢價

產品編號 bs-6580R
英文名稱 CDMP1 Rabbit pAb
中文名稱 軟骨衍生形態發生蛋白1/GDF 5抗體
別    名 Cartilage derived morphogenetic protein 1; Cartilage-derived morphogenetic protein 1; CDMP-1; CDMP1; GDF-5; Gdf 5; GDF5_HUMAN; Growth differentiation factor 5; Growth/differentiation factor 5; LAP4; Radotermin.  
研究領域 心血管  細胞生物  信號轉導  干細胞  生長因子和激素  轉錄調節因子  
抗體來源 Rabbit
克隆類型 Polyclonal
克 隆 號
交叉反應 Human,Mouse (predicted: Rat,Rabbit,Pig,Cow,Dog,Horse)
產品應用 WB=1:500-2000
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
理論分子量 55 kDa
檢測分子量
細胞定位 細胞膜 分泌型蛋白 
性    狀 Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human CDMP1/GDF5: 201-300/501 
亞    型 IgG
純化方法 affinity purified by Protein A
緩 沖 液 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.
保存條件 Shipped at 4℃. Store at -20℃ for one year. Avoid repeated freeze/thaw cycles.
注意事項 This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
PubMed PubMed
產品介紹 Defects in GDF5 are the cause of acromesomelic chondrodysplasia Grebe type (AMDG) . Acromesomelic chondrodysplasias are rare hereditary skeletal disorders characterized by short stature, very short limbs, and hand/foot malformations. The severity of limb abnormalities increases from proximal to distal with profoundly affected hands and feet showing brachydactyly and/or rudimentary fingers (knob-like fingers). AMDG is an autosomal recessive form characterized by normal axial skeletons and missing or fused skeletal elements within the hands and feet. Defects in GDF5 are the cause of acromesomelic chondrodysplasia Hunter-Thompson type (AMDH). AMDH is an autosomal recessive form of dwarfism. Patients have limb abnormalities, with the middle and distal segments being most affected and the lower limbs more affected than the upper. AMDH is characterized by normal axial skeletons and missing or fused skeletal elements within the hands and feet. Defects in GDF5 are the cause of brachydactyly type C (BDC). BDC is an autosomal dominant disorder characterized by an abnormal shortness of the fingers and toes.


Function:
Could be involved in bone and cartilage formation. Chondrogenic signaling is mediated by the high-affinity receptor BMPR1B.

Subunit:
Homodimer; disulfide-linked (By similarity).

Subcellular Location:
Secreted.

Tissue Specificity:
Predominantly expressed in long bones during embryonic development.

DISEASE:
Defects in GDF5 are the cause of acromesomelic chondrodysplasia Grebe type (AMDG) [MIM:200700]. Acromesomelic chondrodysplasias are rare hereditary skeletal disorders characterized by short stature, very short limbs, and hand/foot malformations. The severity of limb abnormalities increases from proximal to distal with profoundly affected hands and feet showing brachydactyly and/or rudimentary fingers (knob-like fingers). AMDG is an autosomal recessive form characterized by normal axial skeletons and missing or fused skeletal elements within the hands and feet.
Defects in GDF5 are the cause of acromesomelic chondrodysplasia Hunter-Thompson type (AMDH) [MIM:201250]. AMDH is an autosomal recessive form of dwarfism. Patients have limb abnormalities, with the middle and distal segments being most affected and the lower limbs more affected than the upper. AMDH is characterized by normal axial skeletons and missing or fused skeletal elements within the hands and feet.
Defects in GDF5 are the cause of brachydactyly type C (BDC) [MIM:113100]. BDC is an autosomal dominant disorder characterized by an abnormal shortness of the fingers and toes.
Defects in GDF5 are the cause of Du Pan syndrome (DPS) [MIM:228900]; also known as fibular hypoplasia and complex brachydactyly. Du Pan syndrome is a rare autosomal recessive condition characterized by absence of the fibulae and severe acromesomelic limb shortening with small, non-functional toes. Although milder, the phenotype resembles the autosomal recessive Hunter-Thompson and Grebe types of acromesomelic chondrodysplasia.
Defects in GDF5 are a cause of symphalangism proximal syndrome (SYM1) [MIM:185800]. SYM1 is characterized by the hereditary absence of the proximal interphalangeal (PIP) joints (Cushing symphalangism). Severity of PIP joint involvement diminishes towards the radial side. Distal interphalangeal joints are less frequently involved and metacarpophalangeal joints are rarely affected whereas carpal bone malformation and fusion are common. In the lower extremities, tarsal bone coalition is common. Conducive hearing loss is seen and is due to fusion of the stapes to the petrous part of the temporal bone.
Defects in GDF5 are the cause of multiple synostoses syndrome type 2 (SYNS2) [MIM:610017]. Multiple synostoses syndrome is an autosomal dominant condition characterized by progressive joint fusions of the fingers, wrists, ankles and cervical spine, characteristic facies and progressive conductive deafness.
Defects in GDF5 are a cause of brachydactyly type A2 (BDA2) [MIM:112600]. Brachydactylies (BDs) are a group of inherited malformations characterized by shortening of the digits due to abnormal development of the phalanges and/or the metacarpals. They have been classified on an anatomic and genetic basis into five groups, A to E, including three subgroups (A1 to A3) that usually manifest as autosomal dominant traits.
Genetic variations in GDF5 are associated with susceptibility to osteoarthritis type 5 (OS5) [MIM:612400]. Osteoarthritis is a degenerative disease of the joints characterized by degradation of the hyaline articular cartilage and remodeling of the subchondral bone with sclerosis. Clinical symptoms include pain and joint stiffness often leading to significant disability and joint replacement.
Defects in GDF5 may be a cause of brachydactyly type A1 (BDA1) [MIM:112500]. Brachydactylies (BDs) are a group of inherited malformations characterized by shortening of the digits due to abnormal development of the phalanges and/or the metacarpals. They have been classified on an anatomic and genetic basis into five groups, A to E, including three subgroups (A1 to A3) that usually manifest as autosomal dominant traits.

Similarity:
Belongs to the TGF-beta family.

SWISS:
P43026

Gene ID:
8200

Database links:

Entrez Gene: 8200 Human

Entrez Gene: 14563 Mouse

Omim: 601146 Human

SwissProt: P43026 Human

SwissProt: P43027 Mouse

Unigene: 1573 Human

Unigene: 4744 Mouse



產品圖片
Sample: NIH/3T3(Mouse) Cell Lysate at 30 ug LOVO(Human) Cell Lysate at 30 ug Primary: Anti-CDMP1 ? (bs-6580R) at 1/1000 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 55 kD Observed band size: 60 kD
Sample: NIH/3T3(Mouse) Cell Lysate at 30 ug Primary: Anti-CDMP1 (bs-6580R) at 1/300 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 55 kD Observed band size: 60 kD
版權所有 2004-2026 www.www.ssxsbs.com 北京博奧森生物技術有限公司
通過國際質量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫療器械-質量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網安備110107000727號